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Abstract

The fast development of computers made numerical solutions of
engineering problems very much achievable using many different
numerical approaches. Finite element method is one of the numerical
techniques capable of solving problems with complex geometries. In this
paper an overview of the method is presented and applied to a chosen
heat transfer problem comparing the numerical results to analytical
solution for illustration purposes. As shown in the results the finite
elements solution is in a very good agreement to the analytical solution
for the chosen problem.

oaidlal)

Auigl) Jilsall 5 oSG dpaaad) Jglall Jea ) osaalal) 3 362l gl ) shail) (0
aliall 43yl Aabiad) aaedl Cullad) (e daedl aladiuly jaS s ) Gadacll ALE
Baaal) gl JISEY) ) KR Ja e 50l daasl) L (saa) A 33 sasll
A )l 5l el Juin) AlSie e Lgiydal 5 46y jhall e dale 5 i w25y ¢ 48 5l 028 b
B 8383 sanall pealiall Ja ()l ¢ 23l (8 ria e s LS (5 pdail) Jally dpoaal il
Bl Al g kil Jall ae a2

Introductions

Most if not all partial differential equations that describe real engineering
problems cannot be solved using analytical techniques. Instead, solutions
can be approximated using numerical methods.

Finite elements is a numerical technique being applied for the solutions
of differential equations in different fields of science and engineering.
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Using different types of elements makes the method very much capable
of solving problems with complex geometries.

The method is applied to solve problems in structural mechanics, civil
engineering, fluid mechanics, heat transfer and others.

Using triangular elements as shown in figure (1) gives the finite element
method the capability to cover very well the problem domain including
those with irregular boundaries. The method can apply one type of
element or mixed types such as rectangular and triangular in the 2D cases
for instance.

Figure (1) Example of 2D triangular elements and nodes

Theory Behind the Finite Elements Method

Weighted residual method is one of the approaches used to apply finite
elements for the solution of differential equations, the approach is
described and to be used for the solution of 1D heat problem. Other
approaches are available in the literature. [1], [2], [3] and [6].
Weighted residual approach

The procedure in the Weighted residual approach is as follows:
Consider solving the differential equation D(u(x)) = f(x) , if a
solution y(x) is assumed for this differential equation, then the residual

for this equation will be R(x) where

R(x) = (D(y(x))- f(x)) (1)
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Of course, R(x) will not be zero unless the assumed solution is an exact
solution and it is not the case. Next, R(x) is to be multiplied by a

weighting function w(x) and then to be integrated over the problem

domain as.

[ (0l 0)- 1 @)y 2
Now the assumed (approximation) solution can be taken over each
element as

w(x)=D ¥N,(x) 3)

Where m is the number of nodes in the element, N,(x) is the shape
function for node i and y,is the unknown at node i and then equation

(2) becomes

.[:)L [(D@Zl v N, (x))_ f(x)) (xx)dx 4)

The Weighted residual approach takes different names depending on the
choice of the weighting function w(x), some examples are

a) in the Collocation method: the weighting function is taken as

w;(x) = 8(x - x;)
b) in the Least-Squares method: the weighting function is taken as
w,(x) = S—R where % are the unknowns in the assumed
a

approximate solution.
¢) in the Galerkin method: the weighting function is taken to be the
same as the shape functions, that is w,(x) = N,(x) where N,(x)is

the shape function for node i
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Galerkin approaches

The approach will be used for a specific 1D problem in this paper.

Now let us consider solving the following differential equation using
Galerkin approach

The basic procedure can be summarized in the following five steps
Step 1 The differential equation is to be multiplied by a weight function
w;(x) and perform the integral over the problem domain

Step 2 Integrate to reduce the order of the highest order term

Step 3 Choose type of elements and the order of shape functions

Step 4 Evaluate all integrals over each element, either analytically or
numerically, to set up a system of algebraic equations in the unknowns.

Step 5 Solve the resulting system of equations.

Elements and Shape functions

In the application of finite elements as shown in Figure (1), the problem
domain is divided into small pieces known as “elements” and the ends
of each element represent a point known as a “node”

The elements are pieces or segments of the problem domain with points
or nodes as shown. In the 1D domains the elements are lines while for
2D they can be triangular or rectangular and in the 3D cases they are
prisms, tetrahedranes, pyramids, hexahedral or parallelepiped elements.

The degree of shape functions is in general depends on the number of
nodes in the element, as shown below, for elements with nodes only at
the edges, the shape functions are linear and they are quadratic for
elements having nodes both at the edges and at the mid between edge
nodes and so on. 1D line elements and shape functions are shown in
Figure (2), 2D rectangular elements and shape functions are shown in
Figure (3). Other elements and associated shape functions can be found
in the literature [5]. The shape functions are defined using local variable
¢. The local variable ¢ is related to the system global variable x with the
relation.

E=2(x-x,) )
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Where (/) is the element width and x, is the distance from the problem

origin to the center of the element n.
The 1D two node elements employ linear shape functions given by

N©=5(-¢) Na§ = (1+8)

And the three node elements employ quadratic shape functions given by
1 1
Ni(€)=-&1-2) N©=0-¢)  N&=_&¢+)

The elements and the plots of the shape functions are shown in Figure (2)
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Figure (2) 1D elements and plots of the shape functions
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Application of Galerkin Approach to 1D heat Problem
The steady state heat conduction in 1D with uniform heat generation is
governed by the following second order differential equation.

o°T e
k 2x+Q:O with 0<x<L (6)

Where T (x) is the temperature function andQ is the uniform heat

generation per unit volume. The finite element solution will be compared
to the exact (analytical) solution which is given by

T(x)= %{(Lz ZZL j+ T, @)

Where:
k is the thermal conductivity of the material.

h is the convective heat transfer coefficient.
First in the finite element solutions, the equation is to be multiplied by a
weighting function w(x) and to be integrated over the problem domain

as

j w(x )—(k—}d\w j w(x)0dv =0

:sj’“ ()—(kfl—TjAd +ijw(x)QAdx 0 (8

where  dv=Adx and takingw,(x) = N,(x) the same as the

shape functions
Integrating the left-hand side integral of equation (8) gives

dr|® x.[ dN, dT X, - )
dxx[—kAj ( dj IXIN(x)QAdx 0, i=12
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Using natural (local) coordinates and T is taken to be the approximate
solution over each element given by

e 2 Tl
T =2 TN =[N Nz(:)]{T} (10)
So that
dT _dT*d§ _2dT° _2[dN,(&) .  dN,($) .
dx  dE dx 1 dE 1| dE ' dE

(11)
o [
! T,

Substitutions would result into a system of equation that can be written

in general as

MT=G+f (12)

Which can be written for any element as

ka1 =177 ol
R ®

Where f depends on the problem conditions

Element 1 Element 2 Element 3 Element4 — - — ——

node1 node|2 node| 3 node/4 — — — — — —

Insulated side

figure (3) Global system elements
For the global system as shown in figure (3), equation (13) becomes
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Now taking the length of the system domain to be(120mm), the cross
sectional area(A =1m?’ ),(k =26 w/m "c) , (Q =0.42 Mw/m’ ), the left
hand side is insulated and the right hand side is subjected to convection
at 85 °c, the heat transfer coefficient s =625w/m* °c.
The boundary conditions used to determine the analytical solution given
in equation (6) are:

e 1o heat loss through the insulation in the left-hand side

iZZ:O at x=0
dx
e Convection at the right-hand side boundary

(FD%EZ:MT—E) at x=1L
dx

For the finite element solution, the system domain is divided into 8
elements (/ = 15mm), then the matrix in equation (14) will be

______ " _ __|_

1U33 fu¥§4_"__| (T 731500
Cl33_ | 34666 I—_173_3~3_|_ - L| /63000,
17333 ! 3466.6) -1733.3 19500

CIT33 34666 -17333

_____ y E (15)

[ 3466.6 —1733.} 1950.0!
L33 358315 L5_627_5'd_

221



02024 srammd [pdlad) aaall] 48 jaall (318 1) Adas

As indicated in equation (15) it is clear that the element matrices are:
17333 17333 3150

M = , G =

= |—-1733.3 17333 | — |3150

Note that except for the last element the element matrices M°, G° are

the same and for the first 7 elements and f =0, but for the last element

f#0, that is

0 1733.3 —1733.3 0 o0 1733.3 —1733.3
M® = +h = And

-1733.3 17333 0 1 -1733.3 23583

¢« | 3150 0 3150
f = +hAT,| |=
= 3150 1 56275
This system of algebraic equations is being solved using Gauss

elimination, the obtained solution is shown along with analytical solution
in figure (4).
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Figure (4) Numerical and Analytical Solutions
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Conclusions
In the illustrating problem in the application of Galerkin approach to 1D
heat problem, Finite element method is a numerical technique that

produces approximate solutions in general in a very good agreement with
exact solutions. The capability of the method to solve problems with
complex geometries makes it one of the important numerical tools for

applications in general engineering problems.

The discussions and procedures can be easily extended into problems of
2D and 3D geometries.
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