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Abstract:

One of the simplest and most widely used methods of estimating the advance of a fluid
displacement front in an immiscible displacement process is the Buckley-Leverett method. The
Buckley-Leverett theory estimates the rate at which an injected water bank moves through a
porous medium. The approach uses fractional flow theory and is based on the following
assumptions and conditions: 1. D two-phase flow of incompressible fluids, e.g., Water
displacing oil. 2. Oil and water are immiscible. 3. Homogeneous reservoir with constant
properties. 4. Diffuse flow. 5. Gravity and capillary pressure effects are negligible. This method
1s well known; you almost always encounter this method when waterfloods are the topic of
discussion. At many courses this method is taught as a general method for immiscible
displacement, and then the interest normally stops. This study described a method for calculating
saturation profiles when the effects of capillary pressure gradient and gravity are excluded.
Based upon the solution of the basic partial differential equation, they found that, as time
progresses, the saturation becomes a multiple-valued function of the distance coordinate X.
Therefore, a numerical reservoir simulation model ECLIPSE® Simulation Software and
analytical one has been developed for predicting the performance of two-phase fluid flow in a
one-dimensional synthetic reservoir system. The validity of this synthetic reservoir model has
been verified by comparing the solutions of numerical simulation with the analytical model from
the Buckley-Leverett theory.

Keywords: Buckley-Leverett equation, Fractional flow, Immiscible displacement, Relative
permeability, Reservoir simulation, Two-phase flow.
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1. Introduction

In day-to-day business the reservoir simulator is normally used for even the simplest
things. If you want to get a feeling of the performance of a waterflood, surfactant flood, or a
steam flood almost all people immediately go to complicated models. However, the Buckley-
Leverett method can in these situations also be used, it gives a good estimate of the best
performance that will ever be observed. If you can’t get it economical with these numbers, there
is no need to try to do more complicated reservoir simulations since the performance will only
get worse.

Most of the oil and gas recovered from reservoirs is displaced immiscibly by water
and/or gas. The displacement could be in the form of solution gas drive, gas cap expansion,
water influx from aquifers or injection of water and/or gas. Solution-gas drive, gas cap
expansion, and water influx from aquifers are essentially natural processes that supply energy
to the reservoir for hydrocarbon recovery. Gas and water injections are designed and installed
to artificially supply energy to the reservoir and thereby improve hydrocarbon recovery.

It is important to understand the fundamental processes that occur when reservoir fluids
are displaced immiscibly by gas or water. The displacement process is affected by the wettability
of the rock, and the mobility ratio between the displaced and the displaced fluids. The total
efficiency of the displacement process is measured in terms of the effectiveness of water or gas
in displacing the reservoir fluids, and the proportion of the reservoir actually contacted by the
displacing fluids.

In this chapter, basic concepts in immiscible fluid displacement are presented. These are
then followed with the presentation of the fractional flow equation, the Buckley-Leverett'
equation, and the Welge!? method for estimating average water saturation in a water
displacement process. These equations are presented to familiarize the engineer with some of
the classical developments in the analysis of immiscible displacement processes before the
advent and widespread application of reservoir simulation techniques. This approach is intended
to enable the engineer to become conversant with some of the terms generally used in the
industry to analyze and discuss the results from reservoir simulation when applied to immiscible
displacement processes.
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The objective of the research program reported herein is to develop and describe
methods for reservoir simulation, including computer programs, to analyze two-phase fluid flow
in a one — dimensional reservoir system. Moreover, several tests will be presented to verify the
validity of the model.

The fundamental equations which are used to describe two-phase fluid flow in porous
media include Darcy's Law for each phase. The special case of one — dimensional,
incompressible, two-phase flow received much attention in the petroleum engineering literature
in the early years. The basic about the displacement of oil by an injected fluid is that of Buckley
and Leveret [1942]". This study described a method for calculating saturation profiles when the
effects of capillary pressure gradient and gravity are excluded.

Based upon the solution of the basic partial differential equation, they found that, as time
progresses, the saturation becomes a multiple-valued function of the distance coordinate X.
Later, the one-dimensional displacement equation for a homogeneous permeable porous
medium, including the effects of capillary pressure and gravity forces, were solved?.

Most of the mathematical derivations of equations used in the numerical simulation
herein are adaptations and extensions of previous work on one-dimensional and two-phase flow.
This method excludes the effects of capillary pressure and gravity forces. However, the
compressibility of both oil and water is considered. In addition, pressure profiles are calculated
implicitly, and saturation profiles are calculated explicitly. Relative permeabilities required are
functions of saturation only.

2. Literature Review

Considerable progress has been made in the past few years for obtaining numerical
solutions of equations concerning two-phase flow and multiphase flow in porous media. Several
papers appeared in the literature describing the quantitative treatment of waterflood recovery
problems. A useful purpose may be served herein by outlining some of these significant papers.

Buckley and Leverett [1942]' established a theory of oil displacement based on the
relative permeability concept. They described the mechanism by which the displacement
occurred. Moreover, a method for calculating saturation profiles was developed when the effects
of capillary pressure gradient were ignored. In their original solution of the two-phase flow
problem, Buckley and Leverett observed that the solution of the two-phase flow equations
became multiple-valued in saturation, even though it is physically unrealistic for saturation to
have more than one value at a given position.

The Buckley and Leverett [1942]" analysis is the first pioneer work in the study of linear
displacement of a fluid by another fluid. The solution of their displacement study on two-phase
fluid excluded the effect of capillary and gave multiple results for saturation at a given position.
Holmgren and Morse [1951]° utilized the Buckley-Leverett theory to calculate the average water
saturation at breakthrough and explained dispersion because of capillary effects.
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West, Garvin, and Sheldon [1954]* presented a general discussion of the two-phase flow
problem and treated linear and radial systems with both capillary pressure and gravity with
consideration of the effects of compressibility.

Douglas, Blair, and Wagner [1958]° developed different methods for solving the one-
dimensional case for incompressible fluids with capillarity using finite difference methods.

To solve the displacement equation including capillary as well as gravity, Fayers and
Sheldon [1959]° failed to determine the time required to obtain a particular saturation, which
later was explained by Bentsen [1978] revealing the fact that the distance traveled by zero
saturation is governed by a separate equation.

Bentsen also noted that at slower injection rates, the input boundary condition of
constant normalized saturation that Fayers and Sheldon [1959]° used was incorrect in
formulation. Also, there have been numerical investigations in the past to solve the displacement
equation.

3. Study Objective

This study is directed towards to perform a comparison between the saturation profiles
from the numerical solution by using ECLIPSE® Simulation Software’ and the analytical
Solution of Buckley Leverett Equation, excluding the effect of capillary forces in both
imbibition and drainage process.

In addition, understanding the multiphase flow behavior in waterflood mechanisms and
investigate the factors that control the front displacement.

4. Methodology

There are two techniques for solving mathematical reservoir models: analytical and
numerical. Each of these has certain strengths and limitations.

4.1. Analytical Techniques

Analytical or closed-form techniques offer the advantage of providing exact solutions
(when they can be found); furthermore, those solutions are continuous throughout the system.
The types of problems that are amenable to analytical solution, however, are very limited.
Analytical methods fall short when we start dealing with varying formation thickness, non-
uniform porosity and permeability, and changing fluid properties, and other such conditions that
describe most real reservoirs. To find analytical solutions for the type of system that "Mother
Nature" generally provides, we have to modify the problem — sometimes quite drastically — to
make it plausible for handling analytically. What we end up doing is providing an exact solution
to an approximate problem (e.g., a classical well test analysis model).
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4.2. Numerical Solution

A numerical solution involves discretizing, or approximating the mathematical model -
that is, using a numerical tool such that continuous forms of the partial differential equations are
written in a discrete form. We perform this discretization process not only on the partial
differential equation, but also on the physical systems. This means that we divide the physical
system into a number of sub-domains that are coupled to one another.

The clear advantage of the numerical approach is that it allows us to assign representative
properties to as many parts of a system as we have information for. However, we must not forget
that we inevitably lose some measure of accuracy in discretizing the partial differential
equations. The net result is that in using a numerical approach, we are providing an approximate
solution to an exact problem.

5. Analytical Techniques

Most of the analytical methods estimate volume of cumulative oil recovery as a function
of cumulative water injection. They do so by:

1. Dividing the total reservoir thickness into the desired number of distinct permeability
layers (by various approaches) or flow zones (current approach), making sure that the
vertical permeability distribution is correctly mimicked.

2. Allocating the injected water rate at any time among the flow zones.

Calculating cumulative oil recovery as a function of cumulative water injection into each
flow zone.

4. At various times during the flood life, combining the zonal oil recovery and water
injection to obtain performance of the total reservoir.

5. Relating oil recovery to time by using the average injection rate estimated during that
time step.

Craig [1971]° has described all the methods and their strengths / shortcomings in his SPE
monograph. The biggest advantage of these analytical methods is that one can predict the
composite (gross) behavior - oil recovery, water requirements, water-cut - of the reservoir. The
biggest shortcoming is that they cannot predict the details on sector (areal or vertical) or
individual well basis.

These methods include:
1. 1-D Models for estimating Displacement Efficiency, Ep
= Buckley & Leverett method for Dispersed Flow.
= Dietz method for Segregated Flow.
2. 2-D Areal Models for estimating Areal Sweep Efficiency, Ea
3. Layered Models for estimating Vertical Sweep Efficiency, Ev
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= Stile's method.
= Dykstra and Parson's method.

4. Many methods incorporating all the above.

These methods are dated and are not often used these days for detailed analysis.
However, they were used extensively prior to the availability of reservoir simulation models.

The use of these methods is still recommended, as they provide:

= Insights into the mechanisms (physics) of the WF process.
= Approximate recovery estimates which could serve to judge the credibility of the
results of a simulation study.

5.1. BUCKLEY LEVERET (Basic Fractional Flow Procedure)

The Buckley-Leverett [1958]'° equation is based on the principle of conservation of
mass for linear flow of a fluid (water or gas) through a reservoir at constant total flow rate. It is
also the most common analytical procedures are tied to the Fractional Flow relationships.

To illustrate the derivation of the Buckley-Leverett equation, the case of water displacing
oil is used. Note that the same equation can be developed representing the case for gas displacing
oil.

The most common basis for these procedures was developed by Buckley & Leverett as
follows:

= How much oil and water are flowing at any point of interest in the reservoir
= How long does it take for the injected water to reach a point of interest (Producer)
= How does displacement efficiency relate to injection volume?

Consider a volume element of a linear reservoir model shown in Figure [3.1]. Let the
thickness of the element be represented as [1x and located at a distance, x, from the inlet face of
the linear model.

Qutlet
gy

Qi
Inlet

Figure (1): Linear reservoir model."
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A volumetric balance in terms of the water phase (assuming density of water is constant)
for the element of the reservoir model can be written as:

{Vol. of water ﬂowing} {Vol.of water flowing }

[Accumulation of water}

into elementin time, At | | out ofelementin time, At in elementtime, At

The previous expression can be expressed algebraically as:

¢ AAx
[qu, At]x—[qut At]x+m=|:m' W} ......................................... (1)
Re-arranging Eq. [1] gives:
(pAAX ﬂ :_[fw]x-p-Ax_[fw]x (2)
—5‘615% A A s

Taking limits as A= 0 and Ax— 0 yields the continuity equation:

oA ' oS, . 8f_w
YR T A A T .

As stated, the fractional flow of water is a function of water saturation only if fluid
properties and total flow rate are constant. By application of chain rule f = f\(Sw) can be

expressed as:

o) () (9,
O AT [ o

Substituting Eq. [4] into Eq. [3] and re-arranging gives:

{asw} 56154, |( O, (GSW) 4
e R | g @

Equation [5] gives water saturation as a function of time at a given location. A more
useful equation expressing water saturation as a function of location at a given time can be
developed from Eq.[ 5]. For any displacement, the distribution of water saturation is a function
of both location and time. This is represented as:

S =8, (X08) e 5)

The total derivative of is then:

s, = [aSW j dx + (aS—W] Qb e (6)
ox ), ot ).
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Since the focus is on a fixed water saturation, then dSw=0 . And Eq. [7] becomes:

Oz[aS—Wj dx{aswj Qb e (7)
ox ), ot ),

By re-arrangement, Eq. [8] becomes:

os,,

dx\| ( ot jx

(EJSW ——W ....................................................................... (8)
)

[d_] __ 56154, (¥, )
dt)s P T —

Since the total flow rate is assumed to be constant, then fractional flow of water is
independent of time. Hence,

(aswl ettt et s s ee et e s et s s e e s s ean (10)

Equation [11] then becomes:

(de 5615, df,
Sy

a QA S, T——————— (11)

Equation [12] is the Buckley-Leverett equation. It is also called the frontal advance
equation. Integration of Eq. [12] yields a useful form of the Buckley-Leverett equation:

x:iéww(%] e (12)
S

o4 |ds,

w

Equation [13] can be used to calculate the distribution of water saturation as a function
of time in a linear reservoir under water injection or aquifer influx. The distance travelled by a
given saturation in a specified time interval is proportional to the slope of the fractional flow
curve at that saturation assuming the total flow rate and reservoir properties are constant. Using
this approach, the distribution of water saturation in the reservoir as a function of time can be
calculated by determining the slope of the fractional flow curve at that saturation. However,
because of the shape of the fractional flow curve, it is possible that two slopes of equal value
can exist for two different water saturations. Appling Eq. [13], this is interpreted to indicate that
two different water saturations can exist at the same location in the reservoir at the same time.
The appearance of this contradiction in the application of the frontal advance equation is
illustrated in Figure [2].
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100
s o .. Oil Distribution.
wWm ™ "'-h-__,_____ 2 ; i e A
- _\h\_\: e
T T e e
S 50— _~ _Flood Water — _ Y1 —__ _\
3 : 3
Initial Water
Distribution
0

Distance, X ————»

Figure (2): Saturation distribution based on frontal advance equation.'

Buckley and Leverett [References] recognized that a portion of the saturation
distribution curve is imaginary and that the real curve is discontinuous at the flood front. The
location of the flood front as determined by material balance is represented in Figure [3] by a
solid line such that areas A and B are equal. Note the sharp discontinuity of the saturation curve
at the flood front as represented in Figure [3]. This is because capillary and gravity effects were
assumed to be negligible. If capillary and gravity effects are considered, the distribution of water
saturation at the flood front is more gradual as represented in Figure [4].

‘0il Distribution.

Initial Water
Distribution
0 |
Distance, X —» X

Figure 0): Location of the flood front as determined by material balance."!
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Figure (4): Location of the flood front with capillary and gravity effects. !!
5.2. The Welge Method'?

Welge [1952]'? proposed a method for computing oil recovery from gas or water drive
that simplified the application of the Buckley-Leverett method. The Welge [1952]'? method is
presented with graphical illustrations for the case of water drive in a linear reservoir. The
graphical illustrations can be replicated for gas drive by simply replacing with respectively.

5.3. Water Saturation at the Flood Front

Water saturation at the flood front, can be determined graphically using the Welge
method by drawing a straight line from initial water saturation tangent to the fractional flow
curve as shown in Figure [5].

1.0
fwf
Tangent
Point
fW
0.0 ¥
0 Suwir Sy 100

S (%)

Figure (5): Fractional flow curve with application of the Welge method.
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If the initial water saturation is greater than the irreducible water saturation, the tangent
line is drawn from the initial water saturation as shown in Figure [6].

1.0
it
Tangent
Point
fw
fwi
0.0 ;
0 Swir Syi Sui 100

Sy (%)

Figure (6): Fractional flow curve with application of Welge method for Swi > Swir.
Sy
1.0 ‘

0.0 .
0 B 100
Sy (%)

Figure (7): Fractional flow curve with application of Welge method for average water saturation.
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5.4. Average Water Saturation behind the Flood Front

By extending the tangent line drawn to the fractional flow curve as shown in Figures [5]
or [6] to the point where f,=1.0, the average water saturation S, , behind the flood front can be
determined as shown in Figure [7]. At water breakthrough, S, =S, where S, is the average

water saturation in the reservoir at water breakthrough.
5.5. Average Water Saturation after Water Breakthrough

The average water saturation after water breakthrough is determined as shown in Figure
[8] by drawing a tangent line to the fractional flow curve at water saturation, Sw», greater than
but less than the maximum water saturation, . The water saturation, is the saturation at the outlet
end of the linear system after water breakthrough with the corresponding fractional flow of
water denoted as. By extending the tangent line to the point where, the average water saturation,
in the system after water breakthrough is determined.

wat Swabt

1.0 /

f

L Tangent

fwf
f

0.0 {

0 Sy Swt Sz 100
Sw (%')

Figure (8): Application of Welge method for average water saturation after water breakthrough.

5.6. Fractional Flow Equation

The fractional flow equation is used to calculate the flow rate of a fluid as a fraction of
the total fluid flow rate when only two fluids are flowing in the reservoir. The flow rate of the
fluid at any point in the reservoir depends on its saturation at that point. Since relative
permeability of the fluid is dependent on saturation, it follows then that the flow rate of the fluid
is dependent on its relative permeability at that point in the reservoir. Fractional flow of a fluid
in a reservoir is primarily dependent on its relative permeability but can be affected by capillary
and gravity forces. The fractional flow equations developed here assume of linear flow.
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The fractional flow equation developed in this section is for water displacing oil in an
oil-water reservoir.

5.7. Assumptions
The following assumptions are made:

1. The system is linear, horizontal and of constant thickness.

2. The flow is isothermal, incompressible, linear and obeys Darcy’s law.
3. Capillary and gravity forces are negligible.
4

The system is only one homogeneous layer with uniform thickness and constant
permeability.

e

The relative permeability characteristics are the same for all layers.
The initial fluid saturation is uniform at the irreducible water saturation.
The porosity is assumed constant.

A combination of the above is utilized for estimating the above-mentioned information.
Welge's simplified, graphical solution will be presented here.

5.8. Fractional Flow of Water Displacing Oil

1+0.001127 — kky, A[ 0433Apsmad}

M, g, 0L
Jo= tﬂ T (13)
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4.9. Frontal Advance Equation

This equation relates the rate of advance of a known saturation to the total fluid velocity and
to the change of fractional flow caused by a small change in the saturation of water.

:5.615-Qi-Az[de}

X
S @A das,

5.10. Procedure for Buckley-Leverett Method for Waterflood Prediction

» Step No. 1: Calculate fy as a function of Sw using the equation appropriate for the situation
and plot it on Cartesian paper.

fo 1

T

_SW_>

= Step No. 2: Draw tangent to fi, — Sy curve from Sy-init value of Sy, at initiation of waterflood.
Look up values of Swt, fwrand Sw.

Sw  Sw max

!

Sw init
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Calculate the slope of the tangent drawn from Sy.init.

f r_ dfw _ Afw _ /
! dSw 4 Sw (SW —Sw init )

= Step No. 3: Select 6 or 7 values of Sy in between Swrand Sw-max. Draw tangents to fw — Sw
plot from each of the selected Sy value. Look up corresponding values of £’y and Sy, at each
point. Calculate slope of the tangents at each of the selected Sy value.

)
Ju'= (Sw—Sw)

\ \Sw max
'\Selected Values

fw

Sw

6. Numerical Solution

6.1. General Structure of Reservoir Flow Models

The structures of input data in most reservoir flow simulators are remarkably similar.
The general structure of reservoir simulation models is described here to acquaint the reader
with sequence of data input in most simulators. Obviously, the structure of input data will vary
slightly between different simulators. But in many cases, the differences are minor and can be
quickly reconciled between simulators from different sources. The purpose of this section is to
familiarize the reader with a readily available data structure that can be used to transfer data
from one simulator to the other.

6.2. Definition of Model and Simulator

The entry of data into every simulator begins with definition of the size of the reservoir
model and the type of simulator to be used for modeling the reservoir. The key entry that defines
the size of the reservoir model is the number of grid blocks in the model. For instance, in the
Cartesian system, the number of grid blocks in the directions for a 3D model is specified. Also
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defined in this data entry section is the number of wells in the model, the number of tabular data
(PVT, relative permeability, equilibration regions, etc.), and the number of initialization regions,
etc. The type of simulator to be used including the formulation (solution) type is specified in
this section.

For instance, a black oil model based on the Implicit formulation may be selected. Most
important, the date for the start of simulation is specified. This section may be considered as the
section in which the scope of the simulation problem is specified for the simulator. In many
ways, this section defines the amount of computer memory that will be required to run the
reservoir model.

Our main concern (about the reservoir fluid model) was to select a simulator that best
represents the diffusion phenomena. In order to accomplish the objectives of this thesis;
ECLIPSE 100 (Finite Difference Numerical Simulator) was used.

6.3. Model Description

A synthetic linear reservoir model with a single injector and producer wells, the injector
1s located at the first while the producer is located at the last cell in the X-direction. The wells
were assumed to be perforated across the height of the reservoir, Figure [9]. The bottom-hole
flowing pressure and production rates are specified.

[ , _l , _ TR

T
019899 0.34924 0.49950 064975 080000

Figure (9): Schematic of the linear homogenous grid model.
6.4. Geologic Model Data

All the structural and petrophysical data in the geological model are typically assembled
as data input for the gridblocks in a section of the simulator. The structure of the geologic model
is represented by geometrical data on the gridblocks in terms of location and dimensions. This
is usually accompanied with separate specifications of the petrophysical data for each gridblock.
The petrophysical data usually specified for each gridblock include porosity, permeability, and
net sand thickness or net-to-gross ratio data. Initial fluid saturations for each gridblock may also
be specified in some models. These data are then followed with modifications to the grid system
(such as local grid refinement), and modifications to the petrophysical data specified for the
gridblocks.
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All cells have a uniform thickness of Im. The assigned absolute permeability was
1 Darcy and the porosity of 0.20 (fraction). The simulation case was generated from an initial
reservoir pressure above the bubble-point pressure of the selected fluid, which means that,
initially, the only fluid in the reservoir was oil. Table [1] presents the reservoir properties.

Table (1): Basic reservoir parameters used in the compositional simulation model.

Water Compressibility, cw, psi? 3.0 x 10

Oil Compressibility, co, psi’! 3.0x10°
Rock Compressibility, cr, psi! 6.0x 10°
Core height, h, meter 1
Porosity, &, % 20
Absolute Permeability, k, md 1000
Core width, W, meter 1
Irreducible Water Saturation, Swi, 20

%

Reference Pressure, bar 1
Residual Oil Saturation, Sor, % 15

6.5. Fluid Properties Data

This section of the model data set contains data that represents the PVT properties of the
fluids present in the reservoir. The PVT data are usually presented in a tabular form for black
oil models. For compositional simulators, the PVT data are represented in a compatible form as
output generated with an equation of state.

Table (2): Basic PVT parameters used in the compositional simulation model.

Water Formation Volume Factor, Bw, m3/Sm? 1

Oil Formation Volume Factor, B,, m*/Sm? 1.1

Water Viscosity, [y, Pas 0.001
Oil Viscosity, [1o, Pas 0.004
Water Density, [, kg/m’ 1000

Oil Density, [, kg/m’ 400
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6.6. Rock/Fluid Properties Data

Rock/fluid properties data in the form of relative permeability data and capillary pressure
data are represented in the model as functions of fluid saturations. These data are usually
presented in the simulator in a tabular form. Note that the data in these tables are sometimes
used by the simulator to establish initial conditions in the reservoir model, if the option for
simulator generated initial conditions is selected.

6.7. Relative Permeability Model

The relative permeability is an important input parameter for reservoir simulation studies
and provides a basic description of the movement of phases in the reservoir. It is also used to
describe multiphase flow in a porous media. A change in relative permeability has a significant
effect on the predicted hydrocarbon production rates and the overall recovery factor.

Typical curves suitable for an oil-water system with water displacing oil are presented
in Figure [10]. The value of Sy at which water starts to flow is termed the critical saturation,
Swe, and the value at which oil ceases to flow, Sy, is called the residual saturation. Analogously,
during a drainage cycle Sic and Swc are referred to as the critical and residual saturations,
respectively.

Two phase relative permeability is often represented with simple models such as
the Brooks-Corey model'? and with the parameters end-point relative permeability and residual
fluid saturations. The residual oil saturation is clearly by far the most important of these
parameters and deserves special attention.

The relative permeabilities were estimated for a specific initial water saturation using
the standard Corey expressions following Liu et al. [2001]"° the resulting relative permeability
curves and the Corey function parameters are shown in Figure [10].

1-S. -8 \"°
kro =kfo [ﬁj ....................................................................... (15)
ko =k (%] ............................................................. (16)

Where n, and ny are exponents of oil and water respectively.

Table [3], lists the relative permeability end-point values used in the Corey’s functions
of the base case.

Table (3): Relative permeability end-point parameters.

0.20 0.15 1.0 1.0 2.5 4
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Figure (10): Brooks-Corey relative permeabilities with different critical condensate saturations.
6.8. Model Equilibration Data

Model equilibration data include fluid contact depths (oil-water contact, gas-oil contact,
or gas-water contact), capillary pressures at the fluid contacts, and reservoir pressure at a
selected datum depth. The model equilibration data are in some cases used by the simulator to
establish initial reservoir conditions.

6.9. Well Data

In the section of the model data for wells, the locations of the wells in the grid system
are specified. Also, the grid blocks in which the wells are completed are specified. The
production or injection rates of the wells including the type of fluid produced or injected are
specified. The progression of the simulation in terms of time is defined in this section in the
form of time steps, cumulative time, or dates. These time-based data are very important because
the speed and duration of the simulation are controlled by these data. For reservoirs with
production history, the production data are provided at specific time intervals which could be
daily, monthly, quarterly, semi-annually, or annually. The frequency of production data entry is
totally at the discretion of the user. However, note that higher frequency of production data
specifications reduces the speed of the simulator during history match. Additional data that may
be specified at progressive time periods include introduction of new wells, recompletion of
existing wells, and changes to well fluid production or injection rates.
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6.10. Initialization

The reference pressure is 1 bar. The injection well considered in this study is operating
with a constraint of injection rate of 0.2 m*/day. The producer in this simulation was controlled
by an oil rate of 0.2 m*/day. The well was initially produced at the designated oil rate and
stooped to control when the oil rate dropped below the oil rate minimum limit.

6.11. Assumptions in the model:

A number of assumptions and simplifications have been made in order to make the
attempt to study the problem as following:

» (Qravitational segregation of the condensate is not considered.
* No compositional gradient is considered.
* No irreducible water saturation.

7. Results and Discussion

To test the validity of the numerical solutions for the simulation model, it is necessary
to use data taken under the same conditions into computations using other methods.

In general, the one-dimensional, two-phase characteristics of the reservoir flow are
considered. Saturation is a function of reservoir pressure and flow distance. Relative
permeability is a function of saturation only.

7.1. Presentation of Analytical Solution

According to the Buckley-Leverett theory, water saturation is a function of both time
and position X. We have found that the water saturation at water (front) breakthrough and also
the average water saturation in the reservoir after water breakthrough.

A typical plot of variation of relative permeability to water, k., relative permeability to
oil, kro, fractional flow curve, fi, and its derivative, df./dSw are shown in Figure [11] to [13].
The capillary pressure data are neglected and assumed to be zero.

We need to construct a straight line from the (initial) connate water saturation (f,=0)
that is tangent to the fractional flow curve.

The point where this straight line and the fractional flow curve meet gives the water
saturation at waterfront breakthrough. Extrapolation of the line till fw = 1 gives the average water
saturation behind the waterfront.
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Figure (13): Relative permeabilities curves versus water saturation.
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Figure (12): Buckley-Leverett construction to find average water saturation and water
saturation at breakthrough.
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Graphically this is very simple to do, but in a spreadsheet the slope of the straight line

and the fractional flow curve have to be calculated and compared. The slope of the fractional
flow curve is calculated with:

u, dS, " u, ds,
2

]m(uw‘l'uo)—uw(]dkm(sw)_,_]dkm(Sw)J
df, _ t, dS N
(uw+uo) ..................

dk,,, (S, 1 ( S

ny,—1
_ o =Sue ] n ke (S ) o
] - SH/C - S()r ] - SH’C - S()l‘

(19)
1-8,-8,,

ny—1
Ko\ Siye ) cevvieieiniiiiii, 2
150 Smj o ko (Suc) (20)

The slope of the straight line can be easily calculated. When both derivatives are plotted
in one single graph the tangent point is found.

dh,, (S,) _ 1 [

ds, 1-S,.-S,
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Figure (13): Derivatives of fractional flow curve and tangent line.

The distribution of the water saturation along the reservoir is given in Figure [14]. The
results of the water saturation without the effect of the capillary pressure are depicted in the
same Figure.
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Saturation Profile of the Analytical Solution of Buckley Leverett Problem
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Figure (14): Saturation profile calculated from Buckley-Leverett analysis
7.2. Presentation of Numerical Calculation Results

To compare numerical solutions with the Buckley-Leverett results, a numerical
simulation model involving water displacing oil from a water-wet porous medium is presented
with the same considerations as in the Buckley-Leverett displacement theories. Moreover,
compressibilities of oil and water in the reservoir are also included in this simulation model.
The initial conditions include uniform saturation and pressure distributions. The grid spacing
(Ax) for the numerical simulation is constant. It was noted that the saturation profiles computed
under these assumptions show water accumulating at the downstream end of the system, while
the fluid front proper is still traveling toward the outlet. The results based on the simulation
computation model are shown in the forms of Saturation profiles within the hypothetical
reservoir versus distance (along the X-direction).

The behavior of the linear, homogeneous reservoir is determined using the reservoir
simulator. To maintain the desired pressure in a reservoir, for any volume of water injected into
the upstream end of the system, an equivalent volume of oil is produced at the other end. The
fluid properties are functions of pressure for the model in this report. Viscosity is the dominant
factor in the system. The effects of capillary and gravity forces are negligible and are, therefore,
ignored. The initial conditions of the reservoir were taken to be 80 percent oil saturation and 20
percent water saturation.

Assumptions for the numerical model described in Chapter 3 are consistent with those
for the Buckley-Leverett analysis. The results calculated from the Buckley-Leverett technique
are presented in the Chapter. Consequently, the saturation profiles and all the results calculated
numerically are shown in Figure [4.5] and [4.6]. During computation procedures, 100 grids and
30 grids each are used to represent the total length of 100 meters for the system.
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Figure (15): Saturation Profiles Calculated from Numerical Computations by using Eclipse for

100 Cells after 30 days of Water Injection.
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Figure (16): Saturation Profiles Calculated from Numerical Computations by using Eclipse for

30 Cells after 30 days of Water Injection.

The water is injected into the reservoir with a linear flow rate of 1 m?/day. The oil and
water viscosities are 0.001 (Pa s) and 0.004 (Pa s), respectively. The flow of the displaced phase
(oil) ceases at Sor of 0.15. The porosity of the medium is 20% with an absolute permeability of

k =1 Darcy.
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7.3. Grid Sensitivity

For the sake of brevity, we will show two runs that we have performed: fine — and coarse
grid runs. Fine grid runs are performed by using 100 grids while the coarse grid runs are
performed by using 30 grids, as shown in Figure [17].

For the sake of comparison, the figure below presents the Analytical and the Numerical
Solution of Buckley Leverett.

Analytical and Numerical Sohition of The Frontal Advance in Linear Displacement by Using ECLIPSE after 30 days of Water
Injection

B

™~
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Figure (17): Analytical and numerical solution of the frontal advance in linear displacement.

Comparison of the Numerical Solutions to Buckley-Leverett Results For the purpose of
convenience and easy comparison, the numerical solutions and Buckley-Leverett results, which
represent the saturation profiles along the distance X, are presented on the same plot for various
times.

Figures [18] through [20] contain the data curves separately for various times of water
injection (1 day, 5 days, 15 days, 30 days). With the exception of locations near the water
injection point and at the displacement front.

These comparisons show that the numerical solutions in each case are in good agreement
with solutions obtained from the Buckley-Leverett method. They are of satisfactory accuracy
for most engineering calculations. The only discrepancy in the numerical solutions is a very
slight smearing of the displacement front.
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Figure (18): Distribution of water saturation profile in the analytical solution at different times.

The numerical solutions were obtained with the single-point upstream method, where
the average forward fluid mobility is calculated from the relative permeability and viscosity data
computed using fluid saturation and pressure in block i (the upstream block).
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Figure (19): Distribution of water saturation profile in the numerical solution at different times.
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Figure (20): Analytical and Saturation Profiles Calculated from Numerical Computations by
using Eclipse for 100 Cells at different times.

8. Conclusion:

1. In most cases, the fluid flow inside the porous rock is too complicated to solve analytically.
These methods can apply to some simplified models. However, this solution can be applied
as the benchmark solution to validate the numerical approaches.

2. The method represented here is limited to a one-dimensional, two-phase liquid reservoir
system. However, this is adequate for modeling many important mechanisms of reservoir
drive, or secondary recovery methods, such as waterflooding.

3. The numerical computation procedures for the analysis have been developed and
programmed by Eclipse 100 Model for 100 and 30 cells.

4. The treatment of immiscible displacement is by no means exhaustive. The main objective
was to introduce the engineer to basic concepts and some of the historical theoretical
developments in immiscible displacements. In the process, several important terms were
introduced in discussing the importance of rock wettability, capillary pressure, relative
permeability, mobility ratio, and displacement efficiency in immiscible displacements. The
fractional flow equation was developed to convey the impact of fluid and rock properties
and reservoir geometry on immiscible displacement. In fact, this relatively simple equation
can be used to discuss the fractional flow of water or gas in many waterflood or gasflood
projects.
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5.

The Welge method was introduced to illustrate determination of several terms, such as
saturations at the flood front, average saturations behind the flood front, saturations at
breakthrough, and saturations after breakthrough.

The analytical model is developed for applying the Buckley-Leverett frontal advance theory
to immiscible displacement in 1-Dimension for a length of 100 meter, neglecting the
capillary forces. The analytical model gives more accurate results as compared to
conventional models.

The saturation profiles, which were calculated, are shown to be in satisfactory agreement
with the Buckley-Leverett results. The fine model of 100 cells shows better results than the
30 cells in comparison with the analytical one, where the forward fluid mobility is based on
the relative permeability and viscosity data.

9. Recommendation:

Relative permeability curves are very significant in any study of fluid flow. Accordingly,

experimental measurement of relative permeability curves needs to be carried out.
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