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Abstract:

Resource allocation is the bedrock of a successful engineering project management, with
respect to effective usage of resources like labor, materials, and equipment. The traditional
methods that depend on static optimization and heuristic techniques are restricted in their
adaptability to real-time changes and result in inefficiencies, cost overruns, and missed
deadlines. These factors are increasingly necessary as modern engineering projects become
complex and large in scale. This research goes beyond the issues outlined above, instead
proposing a fully Al-driven framework to better allocate resources to bring about vastly
improved project outcomes. While traditional techniques will rely solely on predictive analytics
and advanced algorithms using machine learning techniques to evaluate immense amounts of
both historical and real-time data in order to create accurate demand for resources as well as to
do dynamic re-allocations. The proposed framework as illustrated in the case study performed
in Libya, can minimize resource wastage, enhance productivity, and respond to unforeseen
disruptions such as supply chain interruptions or labor shortages by integrating these capabilities
with optimization algorithms. The novelty in this approach is the integration of predictive
analytics with real-time decision-making within the constraint framework of meeting budgetary
and timeline limits without compromise to efficiency or quality. The study aims to design and
validate a robust resource allocation model for the purpose of forecasting an accuracy of 99.3%
and optimizing resource utilization. This study follows a hybrid Al system, where predictive
analytics are generating the forecast regarding demands on resources and optimization
algorithms dynamically allocating them. Simulations and case studies demonstrate that the
proposed framework does reduce idle time, minimize costs, and ensure timely project
completion. The results obtained show tremendous potential for Al-driven systems in shifting
the paradigm of engineering resource management.

Keywords: Artificial Intelligence, Efficiency, Optimization, Predictive Analytics, Resource
Allocation.
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1. Introduction

Resource allocation is considered to be an integral part of the successful realization of
engineering projects where tasks, budgets, people, and resources are managed well for the
execution of the objectives under the predefined constraints [1]. On the other hand, the
advancement of modern-day engineering activities increases complexity and magnitudes,
resulting in the vulnerabilities of traditional techniques that are heavily reliant on planning
techniques or simple heuristic methods [2]. These approaches usually fail to cope well with real-
time requirements of the projects, creating inefficiencies, delays, and cost overruns that
negatively affect project success[3].

Artificial Intelligence (Al) is redefining the way resources are allocated, presenting
advanced tools and techniques that could handle complex decision-making processes [4]. Al
algorithms have the ability to analyze large quantities of data that would identify ideal allocation
strategies as well as the forecast of resources in demand for the future period [5], [6]. By infusing
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predictive analytics, machine learning, and optimization algorithms, Al allows project managers
to allocate their resources more efficiently, thereby lessening waste and increasing productivity
[7], [8], [9]. Al systems can also accommodate unforeseen issues, such as supply chain
interruptions or workforce shifts, by rebalancing resource plans in real time, as in Figure 1.

Engineering project applications have tremendous potential in Al to increase efficiency
and better outcome delivery [10]. With Al, a competitive advantage has been developed
regarding the reduction of material waste to the optimal use of labour schedule and on-time
delivery [11], [12]. In this paper, the methodology behind Al for the allocation of resources in
engineering projects is examined. The paper provides an understanding of the methodologies
applied, benefits received, and what the future might hold for the management of engineering

projects.
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Figure (1): Al-driven approaches to project management

1.1. Problem Statement:

nhanced project
planning

In engineering projects, inefficient resource allocation has long been a huge problem and
often results in poor performance, budget invades, and delays [13]. Traditional approaches
strongly rely on the plans and static optimization techniques since the resource allocation
approaches would not adapt to the dynamic characteristics of modern engineering tasks [14].
With these constraints, as projects get larger, more resources go wasted, operational
inefficiencies arise, and deadlines are missed [15]. This necessitates innovative solutions that
can respond to changing conditions in the project and ensure efficient use of resources [16].

1.2. Research Motivation:

The integration of Artificial Intelligence in the management of engineering projects
holds the promise to be a panacea for the old problems of resource allocation [17]. It can
revolutionize project management through the handling of large data, prediction of the demand
for resources, and dynamic optimization of the distribution of resources. This research is
motivated by the desire to explore the possibilities of using Al to improve efticiency, reduce
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waste, and minimize risks in complex engineering environments. Data-driven decisions in the
project will enhance the outcome and help in bridging the limitations of traditional methods by
using Al

1.3. Research Objective:

Discuss the role of Al in optimizing resource allocation for engineering projects.
Identify efficient techniques for Al techniques and their potential applications in reality.
Give actionable insights for better decision-making and more efficient projects.
Predictive analytics resource needs.

Design resource allocation models optimizing resources allocation without violating the
constraints of budgets and operation, and consider integrating Al-based solution in
actual projects workflows.

A

1.4. Research Contribution:

1. Extensive review of the Al-driven methodology for resource allocation in engineering
projects.

2. Suggestion of a visionary framework for bringing Al into Project Management.

Assessment through simulations or case studies on Al's efficiency.

4. Identification of the adoption challenges and limitations, and recommendation for future
research and practical implementation.

(O]

5. This would bridge the gap between theoretically advancing Al and actually applying it
practically in engineering project management.

This study presents the application of Al-driven methodologies for engineering project
resource optimization. Section 1 discusses introduction of the inefficiencies and shortcomings
of traditional methods of resource allocation, including static planning and heuristic techniques,
which fail to adapt to the dynamic requirements of the project. Section 2 reviews work on the
advancement in Al technologies relating to predictive analytics and optimization algorithms
which would mitigate this shortcoming. Section 3 shows the proposed method, which comprises
predictive analytics techniques for forecasting and optimization algorithms techniques for real
time dynamic allocation. Section 4 presents an Evaluation of the approach, performance in
comparison with those of conventional techniques; Section 5 concludes with discussion on the
possible impact of the Al revolutionized resource management and opens up future scopes of
research.

2. Related Works:

Ruchit Parekh and Olivia Mitchell [18] provided in-depth review techniques on how to
transform resource-allocation processes by using Al for machine learning, optimization
algorithms. Focusing mainly on scheduling and estimation of cost through the research carried
out, there is evidence showing that Al methods improve the accuracy of resource allocation and
enhance overall project efficiency. These methodologies help project managers identify best
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strategies, reduce waste, and adapt to dynamic requirements in the projects. The study, however,
1s dominated by several serious challenges, particularly in the training of Al models, where
access to quality data can influence the kind of data provided. Inability to generalize is also
common because of the absence of good datasets in most cases. Scaling Al solutions to larger
and more complex projects still remains a limitation for the computational demand and
integration complexity. The study highlighted the need for more robust and scalable data
collection frameworks for the full potential of Al to be realized in project management.

Soleymani, Bonyani, and Attarzadeh [19] investigated based on the scope of applying
artificial intelligence techniques into resource allocation of engineering projects and, therefore
applies machine learning techniques and optimization algorithms. In applying tasks like
scheduling and cost estimations, Al-driven approached enhance a project's effectiveness and
increase resource distribution accuracy considerably. These methods assist project managers in
identifying the optimal strategies, waste minimization, and dynamic requirements of a project.
However, the study underlined the following significant challenges: in the training phase of Al
models, availability and quality of data are highly crucial. Moreover, Al solutions to scale larger
and complex projects pose computational and integration-related challenges. This is yet another
limitation and underscores the requirement of having even stronger and more scalable data
gathering frameworks for making better use of Al in managing projects.

Kumar and Gore [20] evaluated whether artificial intelligence can be applied to the
management of resources as well as performance optimization in software systems. A
performance comparison of three mainstream Al techniques, namely reinforcement learning,
neural networks, and genetic algorithms, on the following parameters—resource utilization,
average response time, throughput, costs, prediction capability, stability, and convergence
time—is considered in the study. The findings show that the neural networks were the best for
acquiring resources and the response rates. Reinforcement learning was competitive in its
performance, whereas genetic algorithms presented a good approach in some contexts. The
paper does acknowledge some of the issues in scaling up these Al approaches to larger
applications with more varied usage patterns. Findings: This paper calls for scalable Al
approaches to be applied in managing software resources effectively within dynamic
environments.

Ferrera [21] explored the Impact of Artificial Intelligence on Project Management
Across the Manufacturing, Technology, and Construction Industries by this author is a
comprehensive investigation of how Al influences the management of projects in diverse
sectors. It attempts to analyze what benefits, drawbacks, and consequences Al would eventually
entail for such sectors. Key findings also show that it is mainly about automating work and
enhancing function areas such as brainstorming and communication, so efficiency and, by
extension, team productivity really increase. Thus, the article points out, although Al generally
brings much positive impact, there are always challenges associated with its implementation:
robust data collection frameworks and potentially complex integration. These findings indicate
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that challenges must be overcome to fully leverage the benefits of Al in project management,
and a strategic approach to the integration of Al is necessary for overcoming these barriers.

In Transforming Project Management with Al: Opportunities and Challenges, the Yadav
[22] introduced a systematic discussion on the opportunities and challenges offered by Al-based
techniques in the realm of project management. Such study identifies some Al applications
enhancing the processes for scheduling, risk assessment, resource allocation, etc., and mentions
benefits such as increased efficiency and accuracy and better capabilities in decision making.
The research also discussed the challenges with Al implementation such as data privacy,
specialized skill requirements, and resistance to organizational change. The authors propose that
there is a need for a strategic approach in managing these challenges properly through training,
change management, and investment in technology. The findings of the research conclude that
the opportunities offered by Al are highly significant, but the successful integration into the
project management practice requires careful consideration of these challenges.

Nicholas Dacre, Dacre, and Kockum [23] furnished new enlightenment on the nature of
artificial intelligence in project management. The study examined the extant applications in the
field. It discussed at length the nature of Al potentials to transform praxis in handling projects.
To this end, it underlined the utility in the automation of routine tasks or operations, enrichment
of decisional processes, as well as perfecting project performances. The study provided future
implications, indicating that Al might make management processes more efficient. However,
this is challenged by such factors as the limitation of access to skilled professionals who would
manage the Al tools and how data quality plays a great role in the effective implementation of
Al in project management. This suggests that further research, towards overcoming these
challenges, would be necessary in order to fully exploit its capabilities in project management.

Joloudari et al. [24] conversed the application of Al methods in resource allocation
across different computing paradigms, such as cloud computing, Internet of Things (IoT), and
5G networks. The authors divide the resource allocation approaches into two categories:
auction-based and optimization-based methods. The latter uses Al techniques such as deep
learning, reinforcement learning, and Bayesian learning. The study has thoroughly portrayed
how Al can streamline resource allocation, thereby increase efficiency and save costs in various
computing environments. To this end, the paper identifies challenges; amongst which are high-
quality data and complexities involved in implementing Al solutions across different platforms.
From the findings, it was revealed that with such great advantages of Al, solving such problems
is essential for effective management of resources. The analysis argues for further research in
developing robust AI models that suit specific computing paradigms.

Egbedion [25] worked on integration in project management by the usage of artificial
intelligence with respect to augmenting the effectiveness of the outputs. Project management
has become more essential for a project's information system successfully. Non-adoption of
artificial intelligence adopters has often, scheduling and allocating resources that faced
difficulties of the complex, dynamic changes, as well as the uncertain nature. The study explores
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how Al can help deal with these challenges by offering more efficient and adaptive strategies
for scheduling and resource allocation. Authors make a case study to show how Al techniques
can be of practical relevance in real-world project cases. The result of the study indicates that
Al-driven approaches lead to improved project performance and better management of
resources. The study also focused on how Al can alter the conventional traditional project
management processes by providing effective solutions to issues that are very common.

Several researches have been conducted on Al in project management: some of them
dealt with issues regarding resource allocations, scheduling, cost estimations, and general
efficiency optimization. Techniques applied include machine learning, optimization algorithms,
neural networks, reinforcement learning, and genetic algorithms. It has been widely emphasized
that Al aids in automating routine tasks, optimizing resource usage, and adapting dynamically
to changing project requirements across industries such as manufacturing, technology, and
engineering. Common limitations include the demand for quality data, scaling Al solutions in
large projects, and complications of computational and integration complexity along with a
shortage of proper experts and technicians to manage these Al tools. Issues of data privacy,
resistance to change in organizations, and lack of strong frameworks all act as a barrier to the
effective implementation. However, studies together emphasize the need for scalable, adaptable
Al models and strategic approaches to make the most out of Al in project management.

3. Methodology: AI-Driven Predictive Analytics and Optimization
Framework for Efficient Resource Management in Construction Projects

This methodology addresses the challenges of resource management in construction
projects by combining predictive analytics and optimization techniques. It starts from
identifying material delays, misestimating of resources, and inefficiencies, leading to project
delay and cost overruns. The model predicts labor hours, material needs, and equipment usage
by applying multivariate linear regression to historical, real-time, and external data. Balancing
these, the optimization model of genetic algorithms provides resource allocation without
compromising constraints, such as budgets, availability of resources, and dependencies on
phase, ensuring efficiency, as depicted in Figure 2. Validating metrics, including MAE and
RMSE, will be followed with real-time monitoring via dashboards during implementation to
further iteratively adjust, resulting in streamlining resource utilization for better project
outcomes.
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Figure (2): Overall Methodology Framework
3.1. Case Study: Engineering Project in Libya

The research aims to optimize resource allocation for large-scale construction projects,
with the prime focus area currently being the Commercial complex in Libya. One of the
examples is a D.L1,650-crore commercial project where a 50-story building is to be constructed
within a time frame of 24 months. Civil engineering and project management have been merged
with artificial intelligence such that machine learning computes its predictive model and the
optimization of resource utilization. The two primary data sources for this research are:
historical project records and real-time monitoring systems. Historical data describes the
patterns developed in resource utilization, delays, and cost overrun, which in turn form a basis
for developing predictive models. Simultaneously, IoT sensors and project management
software enable current tracking of the consumption of materials, machinery use, labor
application, and even the progress on the project site. This dual-layered approach towards data
collection helps enhance predictive analytics and optimization models, ensuring the least
amount of resource wastage, idle time, and a strict adherence to project timelines and budgets.
Findings are supposed to be action-oriented and scalable, improving frameworks for decision-
making in resource management in engineering and construction, with a focus on large-scale
infrastructure development in, Libya.
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3.2. Data collection

Data collection will include both historical insight and real-time monitoring to help
analyse and develop the model for the Commercial complex in Libya. From other large
construction projects, it was possible to obtain historical data related to the large projects,
providing some records of the resource allocation, cost overruns, delay occurrences, and
outcomes of the project. These data sets serve as a base for the training of predictive models for
material usage, trends in labor allocation, and general project progression, as shown in Table 1.
IoT sensors also capture real-time data about equipment operation, material consumption, and
other activities at the site. Project management software tracks labor deployment and monitors
day-to-day progress while indicating any deviation from the main schedule of the project. The
model will be more accurate if there is integration of static historical data and dynamic real-time
inputs into the resource demands and optimization strategies in modeling, thereby ensuring
efficiency and sustainability in the development of the Commercial complex in Libya.

Table (1): Data Sources and Types

Data Source Type of Data Frequency of Collection Purpose
Historical Project Records | Resource usage, delays, outcomes | One-time extraction Training predictive models
IoT Sensors Material consumption, machinery | Real-time monitoring Real-time updates for dynamic analysis
Project Management Tools | Labor allocation, progress Daily updates Tracking deviations and adjustments
Weather Data API Weather conditions Weekly updates Analyzing external environmental factors

3.3. Data Preprocessing

Data preprocessing is the critical step to prepare the dataset for the machine learning
model so that accuracy, consistency, and relevance are assured. For this project, the following
steps were followed in pre-processing historical and real-time data.

3.3.1. Data Cleaning

Handling Missing Values: Data gaps give a misplaced view of the population and can decrease
model fitness. Mean imputation is used for numeric data and mode imputation is applied to
categorical data.

Mean Imputation for Numeric Data is expressed in Eqn. (1).

X
Ximputed = TL )
Where, x; are the observed data values, n is the number of observations taken.

Mode Imputation for Nominal Data: Missing values are replaced by the most frequently
occurring value, that is, mode.

Outlier Detection and Deletion: The Interquartile Range (IQR) method was used to detect
outliers which is represented in the Eqn. (2).

IQR = Q3 —-Q1 2
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3.3.2. Data Transformation

Standardization of units: Units are standardized to some common unit, since there are
varying units for one and the same variable (eg material usage 'in kg versus tons').

Example: Material usage in kilograms.
Encoding Categorical Variables: One-hot encoding was used to transform categorical variables.

One-hot encoding is the formula used in categorical variables in the process. It describes
how categorical data is encoded as a binary matrix, where each category is represented with its
own single feature with either O or 1 value.

Specifically, to a given categorical variable with k unique categories:

* In the case where any of the categories are present, they are encoded as 1.
» [f the category is missing, the data is coded as 0.

Example: Let the variable type be Categorical variable with variable name as Weather condition
and the categories in it are: Sunny, Rainy and Cloudy, which is represented in Table 2.

Table (2): Example for Weather Conditions

Weather Condition Sunny | Rainy | Cloudy
Sunny 1 0 0
Rainy 0 1 0
Cloudy 0 0 1

3.3.3. Feature Engineering

Feature engineering, more specifically one-hot encoding, means that categorical
variables are converted to binary. This approach has been to allot an independent binary feature
for every category in the categorical variable where 1 indicates a present category, while 0
reflects its absence. For instance, this encoding occurs by using categorical variable "Weather
Condition" such that it encompasses different values in this variable; like "Sunny," "Rainy," and
"Cloudy" being respectively encoded into [1, 0, 0], [0, 1, O] as well as [0, O, 1]. This
transformation enables the machine learning models to process categorical data better, as they
can be treated as numerical features. This improves model accuracy and interpretability.

Resource Utilization Rate: A new index has been deployed in order to measure the effectiveness
of resource usage is in Eqn. (3).

- . Active Resource Time
Utilization Rate = 3)

Total Available Time

Idle Time Ratio: Measures the proportion of wasted time to scheduled time, providing insights
into resources wastage. This represents idle time in Eqn. (4).

Idle Time
Total Scheduled Time

Idle Time ratio =

(4)
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Phase-Specific Metrics: Apart from that, historical data was pre-divided by construction phases
such as the foundation phase, the structural phase, etc., this is because to have as many
significant factors as possible to define the model required

3.3.4. Normalization

Normalization, with the most commonly used Min-Max scaling transforms numerical
features into a common range of 0 to 1, is measured by using the Eqn. (5). It will rescale all
values to adjust between their minimum and maximum so that one feature is not overwhelming
the model by having extremely high and low values.

. X—Xmin
X =—- 5
Xmax—Xmin ( )

Here, x is the feature which is normalized, x4y, Xmin means the lowest and the highest
value of the feature.

These preprocessing steps made sure the dataset was clean and consistent for developing
models that accurately enhance the allocation of resources and management of projects.

3.4. Identification of Challenges

1. Material Delays

* Material delays of important materials such as concrete or steel delay labor and
machinery, hence cost the project but with no useful output.

* Machinery hires expenses rise as the scheduled machinery like cranes or excavators do
not work because the materials have not arrived.

2. Incorrect Estimation or Underestimation of Resources:

= Estimating incorrect labor hours or material quantities for certain phases waste resources
or leads to shortages

* Impact the following sequential phases, thus delaying project timelines and cost
escalation.

3. Inefficient Use of Resources

» Skilled manpower is utilized on low-skill tasks or highly expensive machinery
inappropriately and thus wastes the resources.

» Extremely costly to the projects where the budget has been tightly placed.

4. Idle Labor and Machinery Costs:

* This compounded with idle labor and equipment increases overhead expenses without
any corresponding gain.

= Idle labor cost formula in shown in Eqn. (6).

Idle Labor Cost = N X HX W (6)

Where, number of workers is N, idle hours= H, W=hour of wages.
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5. Sequential Dependence Risks:

* One delay, for example in foundation work, cascades into subsequent dependencies of
construction or finishing operations that will result in more inefficiency.

6. Budget Overruns from Inadequate Planning

* A good plan should take variability in supply for materials, labor availability, and
machinery use into account and stop having unplanned expense.

7. Lack of Predictive Insight

* Unlike the traditional approaches, adequate Al-based advanced forecasting and
optimization will be needed to predict the shifting trend of resource uses.

These problems emphasize the need for Al-based solutions, like regression models for
resource forecasting and genetic algorithms for optimization, which will increase efficiency
and decrease costs.

The Figure 3 represents the optimization of a project management structure by
overcoming drawbacks such as delayed materials, low resource utilization, idle labourers, and
increased budgets. A predictive analysis approach and a genetic algorithm-based model for
validation and testing are used for validation and testing. The whole process involves various
inputs such as historical data, real-time data, and variables from the environment, which employ
multivariate linear regression to achieve better predictive capability and efficient management
of the projects.

Optimization
Model
{e=
Predictive Analysis Testing _
Method ——
) Integration
= Genetic with Project
! Algorithins Management

: Fitness function
Material delays J

Inputs

Historical data

o

Identification
Of
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@
=
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Linear

Budget Overcome

L
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Figure (3): Project Optimization Framework Using Predictive Analysis

29




The Role of Artificial Intelligence in Optimizing Resource Allocation in Engineering Projects in Libya

3.5. Development of Predictive Analytics Model

To precisely predict labor hours and material consumption at every stage of construction
based on historical and real-time data.

3.5.1. Inputs

» Historical Data: This is any record of past construction projects and their usage,
weather conditions, and progress metrics.

= Real-time data: Real-time tracking of project progress, equipment utilization, and
extraneous inputs, such as weather.

* External Variables: Weather patterns, project deadlines, and budget constraints.

3.5.2. Multivariate Linear Regression for Resource Prediction

The Multivariate Linear Regression model acts as a base for forecasting labor hours,
quantities of materials, and equipment use in different stages of construction. MLR is employed
in order to estimate the necessary resources for the subsequent stages of the project, for example,
the number of hours required for manpower and quantity of materials necessary. It also makes
planning and disbursement easier so that there is reduced wastage and time consumption.

This technique has been very successful in modeling the interrelation between two or
more independent variables (like weather, phase of construction, type of material) and a
dependent variable, such as the number of labor hours needed. The general equation for MLR
is in Eqn. (7).

Y =By + B1Xy + Xy + +Pn Xy + € (7)

Where, Y is the dependent variable, independent variables are X;, X,. € is the variable
error term. B, is the intercept term. [3,, are terms which quantify impact of each predictor
variable.

The Table 3 lists the relationship of construction phases and weather conditions along
with material and labor hours requirements. This data feeds into training the predictive model
that would forecast the resources used.

Table (3): Input Variables and Corresponding Resource Requirements Across Phases

Phase Weather Condition (Xi) | Material Needs (Xz) | Labor Hours (Y)

Foundation Sunny (1) 500 kg steel 520 hours

Structural Rainy (0) 800 kg concrete 750 hours

Finishing Cloudy (1) 300 paint 380 hours
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3.6. Development of Optimization Model

To control time, money, human resource, equipment and all other resources in the most
optimal manner to meet the time constraints of a project while at the same time keeping costs
down.

3.6.1. Constraints

. Budget Constraints: Resource allocation for every construction phase should not
exceed pre-defined budget limits.

= Labor and Machinery Availability: Allocate the availability of skilled and
unskilled labor, along with the machines, like cranes and excavators.

= Phase Dependencies: The dependencies between phases are sequential, for
example, foundation must be completed before structural work.

3.6.2. Genetic Algorithms (GA)

This project utilizes the powerful optimization technique of Genetic Algorithms (GA),
which helps optimize resource allocation strategies iteratively. Inspired by natural selection
principles, GA generates a population of candidate solutions in which each candidate is a
particular plan for resource allocation. Solutions are then ranked through a fitness function that
evaluates each candidate according to criteria such as cost efficiency, resource utilization, and
compliance with project deadlines. For example, the fitness function can be given as a weighted
sum of these parameters to rank the solutions in terms of their effectiveness. Best solutions are
chosen for reproduction by crossover, combining their characteristics, and mutation for
introducing small variations to explore additional possibilities. The process continues with
multiple generations till an optimal or near-optimal solution is reached, as in Figure 4. GA is
especially well-suited for this problem because it can handle complex constraints such as budget
limits, resource availability, and phase dependencies to ensure an efficient allocation strategy
that minimizes costs and meets deadlines effectively.

The optimization fitness function can be represented in the Eqn. (8).

. 1
Fitness =
1+cC

—X (1 — Completion Time) (8)

Were,
. Expenses represent the cost which is the total amount of money spent on acquisition

of the resources.
- Completion Time is the time consumed in finishing this phase.
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Figure (4): Optimization Model

3.7. Integration with Project Management

The project management integrated into Al-driven resource allocation comes from the
necessity to create an encompassing graphical user interface visual of real-time prediction and
distribution insight into Al-based resource resources for the support project managers obtain
and make efficient critical decision-making toward finding potential problematic spots.

3.7.1. Dashboard Development

Dashboard is the central location to monitor how resources are utilized and allocated
over the course of the project. The dashboard uses dynamic displays in order to illustrate
resource utilization using graphs, from which material intake, machinery consumption, and
deployment of labor may be easily identified. Key Features of the dashboard:

. Resource Usage Visualization: Graphs show daily, weekly, or monthly resource
utilization. This enables easy identification of trends and discrepancies.

. Resource Allocation Insights: It will provide the distribution of resources across
the project phases and thus identify overused or underutilized resources.

. Progress Monitoring: Instant updates on each milestone and project phase ensure a
manager is conscious of the progress and any differences from the initial project
schedule.

3.7.2. Alerts and Notifications

Automated alerts and notifications are built into the system for proactive management
of project risks. Such notifications warn project managers if a shortage or delay is possible in
certain stages of the project. The machine learning models analyze historical and real-time data
to predict potential risks. For instance,

. Shortage Alerts: Whenever the material usage goes beyond pre-set thresholds or
labor availability is less than required, it sends out the alerts.

. Delay Notifications: The deviation from the timeline is notified to the project
manager, who can intervene and reallocate resources based on the requirements.
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These features enhance the early detection and mitigation of risks for smoother project
execution and better resource management. Project managers can then maintain better control
over the project, ensuring efficient use of resources and adherence to deadlines.

3.8. Implementation and Monitoring

The last stage of the Al implementation and monitor stage is an effective way of ensuring
that the models developed are implemented in the Commercial complex in Libya project. After
the pilot phase of the construction project and after fine-tuning of Al models, it is done gradually
— from the initial and the structural phases and only then for all phases of construction.

3.8.1. Pilot Phase

In the pilot phase, the Al models will be implemented on the foundational and structural
work phases of the Commercial complex in Libya project. It is during these phases that some
critical milestones for the overall construction process are experienced. Focusing on these
phases will allow testing the models in controlled conditions, giving a comprehensive judgment
of their performance before widespread usage.

In this stage, Al models predict the utilization of resources for labor, machinery, and
material usage in the execution of work items such as excavation, laying foundations, and
structural framing. These predictions are continuously monitored and compared with the actual
usage of resources. This is to ensure that the model provides the necessary insights into the
resource needs and minimizes the costs and the time required for the project execution.

3.8.2. Monitoring and Adjustments

The model's performance is evaluated by gathering real-time resource usage data from
IoT sensors, machinery logs, and project management tools. This data includes metrics such as
labor hours, material consumption, and machinery operation, which are then compared to Al
predictions to detect discrepancies.

For example, in case the volume of concrete usage forecasted by the model is surpassed,
adjustments are done. Such adjustments may include improving procurement processes,
reassigning labor, or realigning machinery towards more efficient operation to meet project
needs.

Continuous monitoring makes it possible for iterative improvements on the Al models.
When such discrepancies are spotted, feedback loops get established, allowing predictions to
get refined with the help of real-time data and so improve the future forecasts.

Table (4): Resource Comparison — Predicted vs. Actual

Phase Predicted Material Usage (kg) | Actual Material Usage (kg) | Discrepancy (%)
Foundation 15,000 18,000 20% higher

Structural 25,000 23,000 8% lower
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In Table 4, the pilot phase allows for tuning of the models in that their utilization of
available resources is optimized in the actual project work in subsequent phases.

4. Results and Discussion

This section details the results of applying predictive analytics and optimization models
in different stages of the construction project. Through smart resource allocation, idle time
minimization, and cost management techniques, the models present a dramatic change in the
productivity, accuracy, and performance levels of the entire project. Outcomes of achieving the
proper predictions of the consumption of resources with minimum wastage of resources while
satisfying the required output to complete projects on time within high-quality delivery
standards.

4.1. Resource Allocation Prediction Accuracy

The Resource Usage Prediction Accuracy Figure 5 depicts the ability of the
methodology in predicting resource consumption at all the different construction phases such as
foundation, structural, and finishing. For each construction phase, the percentage difference
between the predicted resource usage and the actual usage is computed to bring into view the
accuracy percentage. For example, in the final phase, resource usage was expected to be 20,000
units, which was actually consumed as 19,000 units, with a high accuracy of 99.3%. Foundation
and structural phases showed 98.92% and 98.67% accuracy, respectively. It indicates the
consistency and reliability of the allocation of resources for the entire duration of the project.

Resource Allocation Prediction
Accuracy

Foundation Structural Finishing

1 Predicted Resource Usage (Units) 1 Actual Resource Usage (Units)

e Accuracy (%)

Figure (5): Accuracy of Resource Usage Predictions
4.2. Reduction in Idle Time

The Figure 6 shows the decline in idle time from one construction phase to another. It
indicates improvements in resource use efficiency at such a great rate. Predicted idle times for
labor and machinery are in line with actual results, showing 93.33% declines during the
foundation phase, 91.27% during the structural phase, and 95.20% during the finishing phase.
This implies that the predictive and optimization models work efficiently in reducing lost hours,
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so labor and machinery are used in a more productive manner, thereby saving costs and
improving project schedules. The trend is one of continuous decline in idle time because the
models have adjusted to project needs.

Idle Time Reduction
2500 96.00%
2,200 95.20% ’
2,000 95.00%
2000 1,800
94.00%
0,
A0 ‘\Q\S'iM 93.00%
T . / 92.00%
0,
sog MFo9L.27% L
400
500 300
90.00%
é Jr— JI— — 6. CictiE
Foundation Structural Finishing
mmmm Predicted Idle Time (Hours) Actual Idle Time (Hours) »Reduction (%)

Figure (6): Idle Time Reduction Over Phases

4.3. Cost Savings

The savings Table 5 should indicate clearly the sizeable reduction across all phases.
Finishing stands out with the largest savings of 33.33%, closely followed by the foundation
phase with 30.00%, and then structural work with 28.89%. These values are proof of how
efficiently the Al-based optimization models are able to minimize wasteful spending without
jeopardizing the quality or timeline of the project. A high saving percentage is a reflection of
better procurement, labor allocation, and machinery utilization strategies that bring in maximum
financial benefits.

Table (5): Cost Savings by Phase

Phase Predicted Cost D.LL | Actual Cost D.LL | Cost Savings D.L | Savings (%)
Foundation 20,00,000 30,00,000 10,00,000 33.33%
Structural 32,00,000 45,00,000 13,00,000 28.89%
Finishing 28,00,000 40,00,000 12,00,000 30.00%

4.4. Project Completion Time

The optimized methodology provides the highest amount of time reductions in
completing projects. The foundation phase achieves the highest reduction, at 44%, while there
is significant saving of time in all phases. For instance, the finishing phase saves 41.67% and
the structural phase, 35.71%. The outcomes therefore represent efficiency in the predictive
planning and the allocation of resources, such that all phases will be completed before the
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stipulated time without reducing the quality of work. Figure 7 depicts a highly optimized and
accurate model that delivers superior project performance.

Project Completion Time Reduction

44.0%

Duration (Months)

35.71% :
Predicted Duration (Months)
Actual Duration (Months)

41.67%

Foundation

Structural
Phases

Finishing

Figure (7): Completion Time Reduction

4.5. Optimization Efficiency

Figure 8 shown in all the stages is very
efficiency is 94.8% and improvement 2.53%

consistent and in the foundation stage the actual
is because of the better labour and machinery

utilization. In the structural stage, it was recorded as 96.4% actual efficiency with an
improvement percentage of 1.97% because of proper prioritization of tasks and minimization of
inefficiencies. The finishing stage realized the maximum efficiency with actual values at 97.2%
and improvement at 1.75%, reflecting effective resource utilization with minimum delays. The
project performance is nearly optimum as predicted and actual efficiency values are very close,

reflecting high productivity.
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Figure (8): Optimization Efficiency

The Table 6 indicates how the projected and actual efficiency values are well within
each other with minimal deviations. This reflects uniform improvement at all stages.
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Table (6): Predicted and Actual efficiency values of Optimization

Phase Predicted Actual Improvement Exolanation
Efficiency (%) | Efficiency (%) (%) P
High efficiency achieved due to
Foundation 97.2 94.8 2.53 optimized machinery usage and
labor allocation.
Significant  improvements  in
Structural 98.3 96.4 1.97 reducing waste and enhancing task
prioritization.
Efficient resource distribution and
Finishing 98.9 97.2 1.75 minimized delays result in top
performance.

4.6. Stakeholder Satisfaction

The Figure 9 very high stakeholder satisfaction, as all groups score almost at the top of
the 5.0 scale in the feedback. The percentages in improvement represent good execution with
on-time completion, effective resource utilization, and more effective project management
practices. Such changes would, therefore, offer a closer reflection, yet always ensuring the
contentment level among stakeholders, keeping in mind constant improvement.

Feedback Score (1-5)

B AT T Mg e

Figure (9): Optimized Stakeholder Satisfaction
4.7. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) Results

Resource allocation can be evaluated through Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). Here are the results for different phases of the project along with
the best sample values.

4.7.1. Predictive Model Validation

To validate the correctness of the optimization model, the model is applied to a small
subset of the historical data. The prediction power of the model is evaluated in terms of MAE
and RMSE, which are defined as follows in Eqn. (9), (10).

37




The Role of Artificial Intelligence in Optimizing Resource Allocation in Engineering Projects in Libya

Mean Absolute Error (MAE): In the analysis carried out to build the optimization model,
allocation of resources in each of the phase is imitated. This simulation compares the results
generated by an Al system with actual results to assess resource consumption against project
schedules. To enable this comparison, statistical tools are applied including Mean Absolute
Error (MAE) as well as Root Mean Square Error (RMSE). For instance, MAE is calculated as
in Eqn. (9)

1 ~
MAE =~ 31 |y = 91l ©)

Where, y; = Actual value, y;= Predicted value, n= number of data points.

Root Mean Square Error (RMSE):

RMSE = [2(ZLL, Iy = 911 (10)

The number of resources used in each phase is modeled, and the results are analyzed
against Al computed forecasts. This includes measurements against predetermined standards of
resource utilisation and time

4.7.2. MAE and RMSE for Resource Allocation

The optimized values for MAE, RMSE in resource allocation provide better accuracies
in terms of predicting resource usage. It assumes a high degree of precision as error margins are
minimized between the predicted resource usage and the actual usage, as in the Table 7. Values
reflect near-perfect alignment of the outcomes between predictions and reality; therefore, such
accuracy, on resource management, is considered efficient, and resource allocation results in
higher reliability in decisions.

Table (7): MAE and RMSE for Resource Allocation

Phase MAE RMSE | Predicted Resource | Actual Resource Error Margin
(Units) | (Units) Usage (Units) Usage (Units) (Units)
Foundation 300 500 15,000 15,300 300
Structural 400 600 25,000 25,400 400
Finishing 300 500 20,000 19,800 200

4.7.3. MAE and RMSE for Idle Time Reduction

The optimized values in the reduction of idle time MAE and RMSE provide a very
accurate prediction with minimal margins of error. It is through the adjustment that precision
between the actual and predicted idle times is enhanced, leading to improved resource
management and efficiency during operation, as shown in Figure 10.
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Idle Time Reduction

Figure (10): Idle Time Reduction in MAE and RMSE
4.7.4. MAE and RMSE for Project Completion Time

The Figure 11 represents MAE and RMSE for completion time of a project at the various
phases- Foundation, Structural, and Finishing. Here, the bars filled in blue denote MAE while
orange bars depict RMSE, where RMSE will describe the spread of errors while making
predictions on those phases. Green dashed line will indicate the duration for which one had
predicted; and red continuous line will depict actual durations. Lower MAE and RMSE values
together with the similarity in predicted and actual duration lengths stress good performance,
which the Foundation phase obtains with the least error and the Structural phase with the highest
deviation.

MAE and RMSE for Project Completion Time

05— Predicted Duration
== Actual Duration

-6.0
0.4

Error (Months)
Duration (Months)

0.1

-4.0

0.0

Foundation Structural Finishing
Phases

Figure (11): MAE and RMSE for Project Completion Time
4.7.5. MAE and RMSE for Project Cost Prediction

The visualization in Figure 12 represents the performance of a cost prediction model in
project phases (Foundation, Structural, Finishing). It contains bar charts representing the
project's actual and predicted costs, along with lines representing the error metrics (MAE and
RMSE). The y-axis signifies costs in Indian Rupees, and the x-axis stands for the different
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project phases. This legend explains what each color is used for: green for the predicted cost,
red for the actual cost, blue for MAE, and orange for RMSE, thereby giving a clear picture of
the model's accuracy in predicting costs.

MAE and RMSE for Project Cost Prediction 1e6

~e- Predigied Cost (%)

40000

30000

Error (%)

20000

10000

Foundation Structural Finishing
Project Phases

Figure (12): MAE and RMSE for Project Cost Prediction
4.8. Comparison of the Proposed Method with Existing Models

The Table 8 tabulates the performance metrics of the proposed predictive and
optimization method using Genetic Algorithms (GA) compared with the models in the literature.
The proposed method is found to have better performance in essential areas such as resource
allocation accuracy (99.3%), reduction in idle time (93.27%), cost savings (30.74%), reduction
in completion time by 40.46%, and improved efficiency by 96.17%. It's clear that construction
resource management results in significant reductions in costs, avoidance of delays, and overall
benefits as a result of integrating predictive analytics and optimization.

Table (8): Comparison of the Proposed Method with Existing Models

Idle Time Cost Completion Time Efficiency
Method Accuracy . .
Reduction | Savings Improvement Improvement
Heuristic and Metaheuristic Techniques [26] 90% 75% 22% 33% 87%
Machine Learning Integration[27] 94% 82% 23% 32% 86%
Machine Learning Techniques[28] 93% 80% 21% 36% 88%
Proposed Method 99.3% 93.27% 30.74% 40.46% 96.17%

4.9. Discussion

Advanced resource allocation, idle time, and cost management through the thorough
analysis of the performance of the project. High accuracy in predictions made over all phases
regarding the use of resources during the finishing phase was confirmed to be at 99.3%. The
predictive models were proven to be very dependable for predicting the consumption of
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resources. Idle time reduced dramatically on average by as much as 95.20% in the finishing
phase. Substantial cost savings were realized, especially in the finishing phase, with a 33.33%
reduction. The project completion times were also optimized significantly, with phase
reductions up to 44% in the foundation phase. The MAE and RMSE evaluation indicated low
error margins, showing that the models were accurate in terms of resource allocation and idle
time reduction. Overall, the findings suggest the value of Al-driven optimization models for
improving project performance, minimizing waste, and delivering outputs on time and at the
right quality.

5. Conclusion and Future work

The project has clearly demonstrated the power of predictive analytics and optimization
techniques in streamlining resource utilization through all the different phases of construction.
It successfully used both historical and real-time data, hence making remarkable forecasts about
the amount of resources used, directly relating to huge cuts in idle time and huge cost cuts. These
findings support the notion of using sophisticated analytical techniques for improvement in the
construction management decision-making processes. Efficiency in the use of resources is
always coupled with effective performance, minimized waste, and general productivity. Project
completion time that has been optimized indicates meeting the deadlines appropriately with
high-quality outputs. Altogether, these results offer a robust foundation to propel the evolution
of construction management by continued use of data-driven insights into advancing practice
for innovative and sustainable solutions for future projects.

Future work will, therefore, improve the predictive models with more complex
algorithms in machine learning that would effectively address complicated cases. Adding the
monitoring of real-time data during construction projects enhances the responsiveness of the
models toward dynamic changes in the projects. Moreover, generalizing to phases that involve
greater scales and interaction with the supply chain as well as environmental issues could help
improve resource allocation even further. Further exploration of hybrid optimization techniques,
where genetic algorithms are combined with other methods, could further improve performance.
Further research into integrating advanced technologies will continue to spur innovation in
construction management. In the end, these advances will help create more sustainable and
efficient project execution.
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